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Neurobiology of Disease

Cell Type-Specific Expression Analysis to Identify Putative
Cellular Mechanisms for Neurogenetic Disorders

Xiaoxiao Xu,' Alan B. Wells,?* David R. O’Brien,>* Arye Nehorai,' and Joseph D. Dougherty>3
'Preston M. Green Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, and Departments of
2Genetics and 3Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110

Recent advances have substantially increased the number of genes that are statistically associated with complex genetic disorders of the
CNS such as autism and schizophrenia. It is now clear that there will likely be hundreds of distinct loci contributing to these disorders,
underscoring a remarkable genetic heterogeneity. It is unclear whether this genetic heterogeneity indicates an equal heterogeneity of
cellular mechanisms for these diseases. The commonality of symptoms across patients suggests there could be a functional convergence
downstream of these loci upon a limited number of cell types or circuits that mediate the affected behaviors. One possible mechanism for this
convergence would be the selective expression of atleast a subset of these genes in the cell types that comprise these circuits. Using profiling data
from mice and humans, we have developed and validated an approach, cell type-specific expression analysis, for identifying candidate cell
populations likely to be disrupted across sets of patients with distinct genetic lesions. Using human genetics data and postmortem gene expres-
sion data, our approach can correctly identify the cell types for disorders of known cellular etiology, including narcolepsy and retinopathies.
Applying this approach to autism, a disease where the cellular mechanism is unclear, indicates there may be multiple cellular routes to this

disorder. Our approach may be useful for identifying common cellular mechanisms arising from distinct genetic lesions.

Introduction
The brain contains hundreds of distinct cell types, each with
unique morphologies, projections, and functions. Yet, there are
clear examples of neurological disruptions caused by deficiencies
in just one cell type or circuit—such as dopaminergic neurons in
Parkinson’s disease, or hypocretinergic (Hcrt) neurons in narco-
lepsy. Clearly, distinct cell types in the nervous system contribute
to different behaviors. However, the cellular disruptions that lead
to the behavioral abnormalities in many disorders, including au-
tism, are not clear. If there were a method to identify the cell types
that serve as the intermediaries between a set of genetic lesions
and a particular behavioral disruption, then one could identify
cellular targets for treatment. Importantly, insights into the cell
types responsible for a disorder create more obvious routes to
treatment, as exemplified by the diverse strategies adopted for
Parkinson’s disease (Poewe et al., 2010; Rodriguez-Oroz, 2010;
Pardal and Lépez-Barneo, 2012).

How could variations in genes found in the genomes of every
cell in the body lead to disruptions of only particular cell types?
There are at least two potential explanations—selective vulnera-
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bility or selective expression (SE). Selective vulnerability posits
that the physiological nature of a particular cell type makes it
uniquely vulnerable to perturbations of a broadly expressed gene.
SE posits that the gene expression of a cell type makes it uniquely
disruptable—the variation disrupts a specifically expressed gene
thatis required only for the function of one particular cell type. At
one extreme, a highly penetrant mutation in a gene expressed in
only one cell type in the brain (e.g., a unique neurotransmitter;
Peyron et al., 2000; Ercan-Sencicek et al., 2010) would strongly
indicate disruption of that cell type as a mechanism for the
disease.

There is a remarkable diversity of gene expression across cell
types in the nervous system (Lein et al., 2007; Cahoy et al., 2008;
Doyle et al., 2008; Dougherty et al., 2012), and there are clear
examples from the literature of both SE and selective vulnerabil-
ity. There are specific examples of disease genes from rare cases
that are expressed only in one cell type, clearly implicating those
cells and their circuits in a disorder (Peyron et al., 2000; Taheri et
al., 2002; Ercan-Sencicek et al., 2010). And, there is the broader
example of SE in the large number of mutations in rod- and
cone-specific genes seen in genetic forms of blindness (Gal et al.,
1994; Freund et al., 1997; Ozgiil et al., 2011; Daiger, 2013). Often,
however, individual disease genes such as Parkin in Parkinson’s
disease (Kitada et al., 1998; Brice et al., 1999) are expressed
broadly in the brain (Pardo et al., 1995; Bergeron et al., 1996;
Stichel et al., 2000), and expression studies would provide little
guidance as to which cells are relevant to a given disease. There
are also examples of clearly implicated disease genes (such as
Lrrk2 in Parkinson’s disease) that are somewhere in between
these two extremes—with enriched expression in striatum and a
limited number of other cell types in the brain, but not ubiqui-
tous expression (Galter et al., 2006; Han et al., 2008). Therefore,
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Figure 1.

A topography of cell-specific and enriched transcripts in the mouse brain. 4, Hierarchical clustering of cell types by transcript levels recapitulates known biological relationships. B,

Example of a single bullseye plot. For each cell type, the size of the bullseye in A i scaled to the number of specific and enriched transcripts at different stringency thresholds. For example, Purkinje
neurons have many unique transcripts (large central hexagon, pSI << 0.0001)), while cortical projection neurons (in A) have few. For CSEAs in later figures, bullseyes will be color coded by Fisher’s

exact test p values as shown.

while a strict SE hypothesis—that disease-causing genes are al-
ways specifically expressed in the cell types disrupted by the dis-
order—clearly will not hold, a softer variation of the SE
hypothesis might be true: across a large number of genes impli-
cated in a disorder, we can hypothesize a relative overabundance
of disease-causing genes will be found with enriched expression
in the vulnerable cell types.

Modern methods have identified dozens of candidate genes
that may contribute to psychiatric disorders, using common vari-
ant genome-wide association studies (GWASs) of single-nucleotide
polymorphisms, rare variant analyses of single nucleotide varia-
tions (SNVs) and copy number variations (CNVs), or postmor-
tem gene expression analysis. In previous work, we generated
bacTRAP mouse lines profiling the expression of protein-coding
genes in dozens of targeted cell types (Doyle et al., 2008; Dough-
erty etal., 2012, 2013; Dalal et al., 2013; Xu et al., 2013). Here, we
combine these two sources of information and test the hypothesis

that the SE of genes can guide us toward identifying the cellular
disruptions mediating disorders. We have called this approach
cell type-specific expression analysis (CSEA).

Materials and Methods

Analysis of cell-specific profiling data to identify cell-specific and enriched
genes. All the mouse cell type-specific gene expression profiling experi-
ments were conducted on a single platform, most using published trans-
lating ribosome affinity purification (TRAP) data [GEO: GSE13379
(Doyleetal., 2008); GSE30626 (Dougherty et al., 2012); GSE38668 (Dalal
etal., 2013); and GSE36068 (Dougherty et al., 2013], and habenula data
[GSE43164 (Gorlich et al., 2013)], except for retinal cell data (Corbo et
al., 2007). Cell-specific gene lists for the cell types (Fig. 1) were identified
by the specificity index probability (pSI) statistic at thresholds from 0.05
to le-4, as described previously (Dougherty et al., 2010), using Entrez
CDFfiles version 14 (Dai et al., 2005). Data were from mice of both sexes.

Analysis of human transcriptome data identify region/time-specific and
enriched genes. The human region- and time-specific gene expression
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analysis experiments were conducted using published RNAseq data
downloaded from Brainspan: Atlas of the Developing Human Brain (Devel-
opmental Transcriptome: RNA-Seq Gencode v3c summarized to genes;
Brainspan, 2013). First, transcripts were filtered to include well annotated
protein-coding genes using RefSeq (release 60) gene annotations, and to
remove transcripts below a background of 0.3 reads per kilobase per million
(RPKM), as described previously (Ramskold et al., 2009).

To reduce complexity, the original 171 samples (all possible combinations
of original regions and developmental periods, from either sex) were aggre-
gated into 6 major regional divisions across 10 developmental periods, and
biological replicates were averaged. Then, specific and enriched transcripts
were identified by the pST algorithm at thresholds ranging from 0.05 to le-4
for the following two distinct comparative analyses: first, pSI values were
calculated solely for the young adulthood samples across the six brain re-
gions. This most closely approximates the time point from the mouse data.
For the second comparative analysis, pSI values were calculated for all pos-
sible comparisons of the 6 brain regions and 10 developmental periods cre-
ating a total of 60 unique combinations.

Candidate gene lists. The curated list of genes identified in human
congenital retinopathies (120 genes) was downloaded from a curated
database (RetNet; Daiger, 2013).

The list of candidate genes affecting human height was obtained from
Lango Allen et al. (2010, their supplemental Table S13).

Lists of postmortem gene expression from human narcoleptic subjects
and mice with Hcrt neuron ablation were taken from Honda et al. (2009).
Mouse data were also taken from Honda et al. (2009, their Table 3), and
the human genes were the nine genes replicated by quantitative PCR, as
described in their text.

Autism candidate genes from the transcriptome of human brain were
derived from GEO: GSE28521, analyzed as described previously
(Voineagu et al., 2011). For those genes with multiple probesets, probe-
sets were averaged, resulting in a total of 8846 genes in 58 cortex samples
(29 autism, 29 controls) and 21 cerebellum samples (11 autism, 10 con-
trols). Differential expression was assessed using the Significance Analy-
sis of Microarrays package (Tusher et al., 2001), for a false discovery rate
of <0.05 and a fold change of >1.3. A total of 463 genes were differen-
tially expressed in cortex; 229 were downregulated (control/autism ratio,
>1.3) and 234 were upregulated (autism/control ratio, >1.3; gene lists
available in R package pSI). As only two genes were differentially ex-
pressed in cerebellum, we focused on the cortical data for CSEA. We also
analyzed Table S5 from Chow et al., 2012 and Table S1 from Garbett et
al., 2008.

A curated list of autism candidate genes derived from human genetics
studies was downloaded from the AutDB (Autism Database; Basu et al.,
2009) before the addition of data from the exome studies. The data were for
328 genes, including rare single gene variants, disruptions/mutations, dele-
tions/duplications directly linked to autism; genes implicated in syndromic
autism; small risk-conferring common variants identified from association
studies; and functional candidate genes not yet experimentally linked with
autism.

Lists of de novo variants were curated from recent autism exome se-
quencing studies (Iossifov et al., 2012; Neale et al., 2012; O’Roak et al.,
2012; Sanders et al., 2012), including 122 protein-disrupting and 528
mis-sense mutations.

SEA statistical testing. To evaluate the significance of overlap between a
candidate gene list and the list of transcripts enriched in a particular cell
type, we used the Fisher’s exact test (Fisher, 1922), with Benjamini—
Hochberg multiple testing correction for the number of cell types assayed
(Benjamini and Hochberg, 1995). Though gene lists at different pSI
thresholds for the same cell type are clearly not independent tests, using
a more conservative threshold that assumes they are, performing a Ben-
jamini—-Hochberg corrected for all cell types and thresholds did not sub-
stantially alter any of the results of this article.

For human RNAseq data compared with human gene lists, the back-
ground was set as any protein-coding gene with RPKM > 0.3, a threshold
indicating detectable expression (Ramskold et al., 2009). For cross-
species comparisons, the “background” gene list for these analyses is
made by the intersection of the following two lists: (1) all genes on the
mouse microarray; and (2) all genes with clear mouse-—human ho-
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mologs. We mapped human-to-mouse homologs based on the UCSC
(University of California Santa Cruz) Genome Browser table “kgxref,”
accessed on May 15, 2013.

Sensitivity and specificity analyses. The retinopathy disease genes (n =
120) were used to investigate the impact of candidate gene list size and
purity on the sensitivity and specificity of CSEA.

To model the impact of list size, we tested gene lists of 13 sizes (n = 1,
10, 20, ...120). For each, we generated a sampled candidate gene list 100
times by randomly selecting genes from the retinopathy gene list. These
100 lists were then analyzed by CSEA across all cell types and pSI thresh-
olds. To get a sense of the false-positive frequency, we also counted the
number of times that a nonretinal cell type was falsely implicated (p <
0.05) across all samples.

To model the impact of candidate gene list purity (i.e., the impact of
including spurious candidate genes), we tested gene lists of fixed size (n =
120) with 11 different proportions of retinopathy genes. Specifically, in a
sampled list, 0%, 10%, ..100% of its genes were randomly selected from
the retinopathy gene list, while the remaining genes were randomly se-
lected from the genome. For each purity level, we sampled and analyzed
the genes as indicated above.

Results

CSEA

First, we merged the data from our surveys of cell type-specific gene
expression from the mouse brain (Doyle et al., 2008; Dougherty et
al.,, 2012, 2013; Dalal et al., 2013; Gorlich et al., 2013). For the pur-
poses of the specific hypotheses cited below, we have also incorpo-
rated published data profiling specific retinal cell types on the same
platform (Corbo et al., 2007). Next, we analyzed these profiles with
our validated analytical pipeline for detecting cell type-specific and
enriched genes (Dougherty et al., 2010). This approach compares
each cell profile to all other profiles and identifies transcripts consis-
tently enriched in each cell type, calculates an enrichment score (the
SI), and ascribes a pSI value. Cell-specific and enriched transcript
lists can then be derived for each cell type at a given pSI threshold.
The lower the pSI, the smaller, yet more stringently specific, the
transcript list will be (Dougherty et al., 2010). As the softer SE hy-
pothesis does not predicate any particular enrichment threshold, we
varied pSI systematically throughout our analyses. Hierarchical clus-
tering of cell types using genes with significant pSI values in any cell
type recapitulates the ontogeny of these cells—there are large
branches that separate glia from neurons, and related subtypes of
neurons are loosely clustered together (Fig. 1A). As expected, mark-
edly distinct cell types, such as rods, have larger numbers of uniquely
expressed transcripts at any pSI threshold (gene list size is propor-
tional to the area of the polygons; Fig. 1B), while less distinct cell
types such as cortical projection neurons have smaller numbers of
specific transcripts, especially at stringent pSI thresholds. Though
inherently relative, this clustering, and the composition of the gene
lists, are relatively stable. For example, even dropping one of two
closely related astrocyte samples (astrocytes of the cerebellum) and
repeating the pSI analysis has no impact on the overall clustering of
the remaining samples, and results only in subtle changes in the gene
lists themselves (Fig. 2A, B). Furthermore, examining the transcript
length distributions we confirmed that there was no relationship to
pSI at any threshold (Fig. 2C), confirming that transcript length
would not bias our results. Having identified sets of transcripts en-
riched in each cell type, we then mined available human data from
brain transcriptomic studies and catalogs of disease-affiliated genetic
variants to generate lists of candidate genes. There is a wide variety of
potential sources for candidate gene lists. A priori, we can assume
that certain features of the candidate gene list will influence the out-
come. First, given that the softer variation of the SE hypothesis pro-
poses only a mild statistical enrichment of risk genes in the cell type
of interest, the method will likely require a fairly large number of
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Across all cell types and pSI thresholds, gene lists are >89% identical when calculated with or
without cerebellar astrocytes. €, Density plot of distributions of transcript lengths colored by pSI
value shows no length bias.

genes to detect a significant signal, especially if multiple cell types are
disrupted in a disorder. Second, many methods of identifying can-
didate regions of the genome do not perfectly indicate individual
genes—both GWASs and CNV studies may implicate regions con-
taining many genes, any of which could be the causative gene or
genes. This uncertainty at the level of candidate genes could also
detract from the ability of our method to identify cell types. There-
fore, the ideal candidate gene list would contain a reasonably large
number of genes, each of which was robustly associated with the
phenotype of interest. As positive controls, we identified one such
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candidate gene list from human genetics (genes causing familial ret-
inopathies), and one from postmortem gene expression data (nar-
colepsy). We also tested a negative control candidate gene list (loci
associated with height) to get a sense of the false-positive rate of our
method. We also investigated the impacts of candidate gene list size
and purity on the sensitivity and specificity of the CSEA before ex-
amining our test case: autism candidate genes from various sources.

CSEA of retinopathies

There are now >100 genes that are clearly associated with congenital
blindness and other disorders of the retina (Daiger, 2013). Most of
these genes have classic Mendelian inheritance patterns with high
penetrance, and thus serve as an ideal positive control in terms of
gene number and strength of association. If our hypothesis is correct,
then these genes should be over-represented in expression profiles of
the primary cell types of the eye—rods or cones. Applying the CSEA,
we detected a highly significant enrichment of retinopathy genes in
the profiles of rod- and cone-enriched genes (Fig. 3A). This result
provides support for the SE hypothesis and proof-of-principle for
our approach. If we had not known retinopathies were diseases of
rods and cones, this analysis would have very clearly indicated that
they were the relevant cell types.

CSEA of height

The GIANT consortium has now identified hundreds of loci that
contribute to the phenotype of height across individuals (Lango
Allen et al., 2010). For the purpose of the CSEA, we make the
reasonable assumption that it is unlikely there is a particular cell
type in the brain responsible for height. Therefore, any signal seen
in this analysis should give us a sense of the magnitude and num-
ber of false positives that a list of candidate genes might provide.
Analysis with these candidate genes reveals no signals (figure not
shown).

CSEA of transcriptome data in narcolepsy

In the analyses above, we tested the CSEA method on gene lists
derived from human genetics studies. However, the method
could equally apply to postmortem transcriptomic data to permit
cellular inferences regarding the consequences of disease. For
example, if a disease results in the loss of a particular cell type, the
transcripts specific to that cell type should disappear. To test this
approach, we combined our analysis with a transcriptomic study
of narcolepsy (Honda et al., 2009). Narcolepsy can be caused by a
loss of Hert-expressing neurons (Peyron et al., 2000), which we
have profiled (Dalal et al., 2013). Microarray data from mice
where these neurons have been ablated identified 63 downregu-
lated genes, which were sufficient to specifically indicate a loss of
Hert neurons (Fig. 3B). In human patients, even though only
nine transcripts were replicated as decreased, these likewise indi-
cated that narcolepsy is a pathology of Hert neurons (Fig. 3B).

Sensitivity and specificity analysis of CSEA
Unlike retinopathies, most complex psychiatric disorders have
only a small number of strongly associated loci. In addition, sev-
eral of the current methodologies for identifying loci do not pro-
vide clear evidence as to which genes in the loci actually
contribute to risk. Thus, in psychiatric genetics, we might have
both fewer candidates and potentially lower confidence in each of
the candidates. Therefore, we used the retinopathy data to deter-
mine the impact of varying these parameters on the sensitivity
and specificity of CSEA.

To model lower candidate gene numbers, we sampled random
subsets of the retinopathy gene list to generate candidate lists of
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(SEA correctly identifies retinopathies as diseases of rods and cones, and CSEA of narcoleptic transcriptomic data identifies a loss of hypocretin neurons. 4, Bullseye plot of the output

of CSEA reveals a substantial over-representation of retinopathy disease genes (n = 120) producing transcripts enriched in rods and cones, regardless of the threshold chosen for pSI. B, Output of
(SEA reveals an over-representation of hypocretin neuron cell transcripts among those transcripts (n = 9) that were decreased in the hypothalami of human narcoleptic subjects or in mice with Hert

neuron ablation (n = 63).

varying numbers. Figure 4A shows the impact of list size on the
average p value for the overlap with rods. It is evident that the
number of candidate genes has a substantial impact on the sen-
sitivity of the method. With very small numbers of genes, we are
unlikely to detect enrichment in rods after multiple testing cor-
rections. However, when the number of genes was =30, >94% of
the sampled gene lists would have correctly implicated rods in
retinopathies at any pSI threshold. A pSI threshold of <0.01 is
shown here. Results are substantially similar across all pSI thresh-
olds from 0.05 to 0.0001 (data not shown).

To model the impact of including spurious candidate genes,
we replace random subsets of the retinopathy gene list with an
equivalent number of random genes (Fig. 4B). As the purity of the
gene list decreased, the enrichment signal in the rods gradually
decreased. Yet, overall, the method was remarkably robust; even

when only 30% of the genes on the list were true retinopathy
genes, >90% of the time the CSEA still implicated rods. Again, a
threshold of pSI < 0.01 is shown here, and results are substan-
tially similar across all pSI thresholds (data not shown).

In the same analysis, we also counted how frequently a non-
retinal cell type was falsely implicated. Varying purity as above,
for a pSI threshold of 0.05, of 1100 total samplings at any purity,
a nonretinal cell type was implicated 56 times, suggesting a false-
positive rate of ~5%. There was no clear relationship between
purity and false-positive rate. With any pSI < 0.01, this false-
positive rate dropped to <1%. Varying the size of the gene list, as
above, had no impact on the false-positive rate, with <1% of
samples showing false-positive results. Overall, while larger,
lower stringency lists (pSI < 0.05) are slightly more vulnerable to
false-positive results, our analysis suggests that, with appropriate



Xu et al. ® Cell Type-Specific Enrichment Analysis

J. Neurosci., January 22, 2014 - 34(4):1420-1431 « 1425

A3O Effect of candidate gene list size B “ Effect of candidate gene list purity
i - S —
25 o 1 1 25 r |
% T o i ' 5 % | B
@] i - i o :
X 2 — B . @ 20 - :
£ T B . c : B '
! 1 ! — E 3 1 4
= 9 o T | H H By LR : H H I
© T - 1 <4 © o ;
> o ! ! i > o i
A& 10 : Q B - & 10 T B J oo
° - T L F ° - D
8 51 59551 2 o séaii
! Q - : : A
0 — i — 0 nE % % T T T T T T T T
1 10 20 30 40 50 60 70 80 90 100 110 120 0 10 20 30 40 5 60 70 8 90 100
Number of retinopathy genes Percent of retinopathy genes in candidate gene list (%)
Figure4. Impact of candidate gene list size and purity on sensitivity and specificity of CSEA. A, Box-and-whisker plots illustrating the distribution of CSEA p values (log base 10 scale, y-axis) for

rods from retinopathy gene lists sampled at various sizes (100 samplings per size). B, From random subsets of retinopathy gene lists mixed with random sets of nonretinopathy genes. The x-axis
(purity) indicates what fraction of the list derives from the original retinopathy set (100 samplings per purity). A pSl threshold of <<0.01is shown here. Results are substantially similar across all pSI

thresholds from 0.05 to 0.0001 (data not shown).

multiple testing corrections, the overall false-positive rate is ac-
ceptably low. This also suggests that significant results for the
same cell type across multiple thresholds should be given more
credence than those that are only identified at a single pSI
threshold.

In all, our analysis suggests that, with the emerging candidate
gene numbers for psychiatric disorders, we should have sufficient
power to detect a signal in some cell types.

Test case: autism

Unlike retinopathies or narcolepsy, the disrupted cell types for au-
tism are not known. Is autism a disease of a single cell type? Or are
there multiple cellular mechanisms contributing to the development
of the disorder? The field is now accumulating reasonable sets of
candidate genes for this disorder, both from studying gene expres-
sion in postmortem brain and from human genetics studies. Based
on the analysis above, the size of these gene lists finally justifies a
comprehensive analysis. Therefore, we sought to determine the fol-
lowing: (1) whether SE may identify cell types relevant to mecha-
nisms of this disorder; (2) whether these consist of a single cell type or
multiple cell types; and (3) whether these results were reproducible
across multiple studies and data types.

Transcriptome profiling

A recent tour-de-force gene expression study screened postmor-
tem cortical tissue from 29 individuals with autism and matched
controls (Voineagu et al., 2011). Alterations of gene expression
from a complex mix of cells such as those from cortex may rep-
resent changes in the relative cellular composition of the tissue
(Shen-Orr et al., 2010; Kuhn et al., 2011; Xu et al., 2013). The
expression results from this human postmortem study were ap-
plied to CSEA on specific genes in cortex cell types to determine
whether they predict changes in particular cell types. Here there
were clear signals (Fig. 5). Upregulated genes were over-
represented in astrocytes and immune cell types, while down-
regulated genes were over-represented in the profiles from
presumptive neurons (especially Pnoc+ neurons, which are
largely interneurons). These results held across multiple pSI
thresholds, and after multiple testing corrections. The most par-
simonious interpretation of these results is that there is a relative
loss of Pnoc+ cells from these autistic brain samples, and a cor-

responding increase in astrocyte and immune cell (potentially
microglial) numbers.

Two other studies provide some support for glial deficits in au-
tism transcriptome profiles. Examining the results of an earlier study
in cortex with a smaller number of subjects (Garbett et al., 2008)
replicates the enrichment of astrocyte genes among those upregu-
lated (n = 130) in autism, though few genes were detected as down-
regulated genes (1 = 22), and these did not map to a particular cell
type (figures not shown). There may be some age dependence to
these effects, as the data from Chow et al. (2012) show a downregu-
lation of oligodendrocyte genes from youths in autism (figure not
shown), but no overlap with astrocytes. The discrepancies seen be-
tween the three transcriptomic datasets are independent of the CSEA
method, as there is little concordance in the primary data between
these studies. This suggests that autism may have substantial heter-
ogeneity not only in its genetics, but also in its cellular mechanisms,
and that the different studies have captured subsets of patients with
different cellular disruptions.

Human genetics

Many parallel approaches (Bill and Geschwind, 2009; Glessner et
al., 2009; Wang et al., 2009; Pinto et al., 2010; O’'Roak et al., 2012)
have implicated hundreds of candidate genes and regions for
autism, though very few individual genes with the strength of
association seen in familial retinopathies (Abrahams and Ge-
schwind, 2008; Devlin and Scherer, 2012). Rather than focus on
the results of a single study, we mined a curated database (Au-
tDB) for a list of candidate loci from across studies (Basu et al.,
2009). Though the signals here are weaker (Fig. 6), candidate
genes from human genetics are over-represented again in cortical
interneurons (Pnoc+, Cort+), as well as in corticothalamic neu-
rons (Ntsr+) and striatal medium spiny neurons.

Finally, recent exome studies have identified seven genes
(SCN1A, LAMC3, GRIN2B, SCN2A1, NTNG1, KATNAL2, and
CHDS8) in which de novo variants are likely causative of autism
(Tossifov et al., 2012; O’Roak et al., 2012; Sanders et al., 2012),
though each gene so far has been detected in only a very small
number of individuals. These mutations collectively are not en-
riched in any of our cell types, nor are the larger number of de
novo proteins disrupting (n = 122, frame-shift, stop codon, or
splice site mutations) collected across all of these studies—
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CSEA of autism candidate genes curated from human genetic studies suggests a disruption of cortical neurons and striatal circuitry. Output of CSEA reveals a substantial over-

representation at multiple pSl levels for cortical interneurons (Pnoc+ and Cort+), layer 5b neurons, and striatal medium spiny neurons.

though each of these individually are not yet clearly statistically
associated with autism. The lack of signal compared with the
AutDB suggests that perhaps there is something different about
the cellular mechanisms of these de novo variants compared with
those found in earlier autism genetics studies. In particular, many
of the newly discovered autism-associated variants map to
genes previously implicated in early brain development, but
the available CSEA data come from adult brains. Therefore, we
also tested our method using pSI values derived from human
brain regions across development, calculated using the Brain-
span (2013) resource.

Region- and time-specific expression analysis

While, there is no collection of human expression data with cel-
lular resolution comparable to what has been done in the mouse,
repeating the analysis with human data across development per-
mits the identification of genes transiently expressed at certain
developmental epochs, and repeating the analysis across adult
regions allows an independent validation of the mouse results, at
least at a crude regional level. Therefore, we condensed the Brain-
span (2013) data into 6 major regional divisions across 10 devel-
opmental times, and calculated pSI values for both a comparative
analysis of just the young adult regions (analogous to our mouse
data; Fig. 7A), and a matrix of regions and times covering all
development times (Fig. 7B).

First, examining the enrichment of autism candidate genes
from the AutDB across human brain regional gene expression
confirms that these genes are enriched in the cortex and striatum
(Fig. 7A). This independently substantiates our mouse findings.
Second, the examination of the de novo events from probands
(Fig. 7B) across both space and time implicates a window in early

to mid-fetal development when these genes are enriched in the
developing cortex, a finding similar to other recent analyses using
distinct methods (Parikshak et al., 2013; Willsey et al., 2013). This
again confirms the potential importance of this structure for the
manifestation of autism and suggests that for some patients the
circuit deficits leading to symptomatology are a consequence of
malformations during fetal development. A control analysis with
the 122 silent de novo variants from unaffected siblings from these
same studies shows no mapping to any particular cell type, re-
gion, or time of development.

Discussion

Comparison to other approaches

There is a clear challenge to understanding the commonalities of
sets of genes arising from high-throughput screens such as
RNAseq or GWAS. A variety of consortia, notably Gene Ontolo-
gies (GO), have attempted systematic functional annotations of
all genes, and a variety of software are available for detecting
biological processes from these annotations that may be enriched
in particular sets of candidate genes (Dennis et al., 2003; Maere et
al., 2005; Shi and Walker, 2007). The hope is that these biological
processes will indicate a commonality of mechanism and suggest
standardized routes to treatments. In autism, these analyses have
variously identified a preponderance of cell-cell adhesion mole-
cules, GTPase signaling, ubiquitination, synaptic regulators, and
neural development among candidate genes (Bill and Ge-
schwind, 2009; Glessner et al., 2009; Wang et al., 2009; Pinto et al.,
2010; O’Roak et al., 2012). However, these GO-based approaches
have two key disadvantages. First, novel genes will be unanno-
tated, and known genes will be annotated only for their known
functions. Given the complexity of biology, current annotations
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are likely to reflect only a modest subset of
the true roles of most genes. Second, bio-
logical processes frequently do not clearly
suggest potential routes to treatments. For
example, if autism is a disorder of cell-cell
interaction, which cells, and which inter-
actions, would need to be targeted for
treatment? B

Here, we have outlined and tested an
alternative approach (CSEA) focused on
identifying candidate cell types that may
be disrupted by human neurological dis-
orders. In many ways, our approach is
analogous to GO analyses, though we
used information derived from gene ex-
pression rather than gene annotation.
Indeed, we view our method as an impor-
tant new complement to those existing
tools. Compared with these previous
methods, our method has the advantages
that nothing needs to be known about the
function of the genes a priori, and that
knowledge of disrupted cell types may
suggest more obvious routes to treatment.
It has the disadvantage that it will be able
to detect the signal only for those cell
types, and developmental stages, that have
been profiled. While clearly the method
will become more informative as addi-
tional cell types are incorporated, particu-
larly with the development of new TRAP
reporter mice (Hupe et al., 2013; Zhou et
al., 2013), here we have partially compen-
sated for the incompleteness of our cur-

A Amygdala

Amygdala

Developmental Stage

@ ® 0@0@6@

rent survey by including profiles from 0.1

brain regions as placeholders for the cells
within them. While this may be an imper-
fect proxy, this disadvantage will gradu-
ally resolve as more cell types are profiled.
It is also important to note that any mea-
sure of specificity is relative, and the addi-
tion of new tissues or cell types will slightly
alter the exact composition of a cell-specific list. Nonetheless, the
collection of cells currently included appears relatively robust to
minor perturbations of this manner. Repeating the analyses for
all figures on a pSI dataset calculated with one cell type excluded
(Fig. 2A, B) did not alter which cell types were detected by CSEA
(figure not shown).

For human expression data, there are other methods, notably
weighted gene co-expression network analysis (WGCNA), that
have been used to identify what might be the signatures of par-
ticular cell types (Langfelder and Horvath, 2008; Oldham et al.,
2008). These methods have the advantage that they do not de-
pend on external information (they are more “bottom-up”); the
signal is derived from correlations within the dataset itself and
can allow inferences from human sources (Kang et al., 2011)
across a variety of ages. However, the measures of cell type ex-
pression are indirect, of limited sensitivity for very rare cell types,
and will not be able to dissociate tightly correlated cell types. Also,
these analyses can only be applied to expression data, and not
human genetics studies. Nonetheless, based on this bottom-up
approach, the authors of one of the transcriptomic studies
(Voineagu et al., 2011) interpreted their results largely in the same
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young adult RNAseq data. B, Rare, protein-disrupting de novo variantsidentified in probands with autism (n = 122) have enriched
expression during fetal cortical and striatal development.

way that we would from our more directed approach: a relative
decrease in interneuron signal, and a corresponding increase in glial
and immune-related genes. Joint analyses using our approach with
WGCNA can further improve the power to detect alterations of
cellularity from transcriptomic data (Xu et al., 2013).

Finally, as cell-specific profiling is not as mature in human
samples, our method sometimes depends on an assumption of a
degree of conservation between human and mouse gene expres-
sion. Systematic evaluation of laminar-specific genes in cortices
of both species suggests good conservation of expression for
~80% of genes (Zeng et al., 2012). Nonetheless, we have also
included pSI values for human brain region data to permit at least
region-level analyses directly from human expression data.

Is autism a disease of a particular cell type?

Retinopathies are clearly a disease of rods and cones, and the strong
signals seen in Figure 3 demonstrate that, at least for these cell types,
our soft SE hypothesis holds. We also have identified the loss of Hert
neurons from narcoleptic brains, even with fairly small numbers of
gene expression changes. Thus, CSEA can identify cellular mecha-
nisms for neurogenetic disorders under some circumstances.
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Our results for autism are somewhat less consistent across
data sources. Two of three transcriptional studies suggest there is
an increase in glia in the brains of individuals with autism, per-
haps reflecting some kind of gliosis, with potentially an autoim-
mune component. This would be consistent with recent work
suggesting a significant preponderance of anti-brain antibodies
in the serum of mothers of children with autism (Brimberg et al.,
2013), as well as microglial activation in the brains of young
adults with autism (Suzuki et al., 2013).

It is also very interesting to note that both a transcriptomic
study and the human genetics database provide some evidence
implicating the cortical interneuron. This supports proposals
that one of the cellular mechanisms of autism may be a relative
deficit in the function or presence of interneurons (Marin, 2012).
This is consistent with mouse research demonstrating that
interneuron-specific knockouts of even broadly expressed syn-
dromic autism genes (such as the Mecp2 gene responsible for Rett
syndrome) can result in autism-like phenotypes (Chao et al.,
2010; Saunders et al., 2013), and complete knockout of other
autism candidate genes can result in a specific loss of interneu-
rons (Sgado et al., 2013).

It is expected there will be some divergence between the hu-
man genetics findings and the gene expression studies. Com-
pared with human genetics, gene expression is likely to show
signals derived from both the causes and the consequences of the
disease. For example, while a signal from genes found in in-
terneurons was decreased in autism, there was a relative increase
in the signals from astrocytes and putative immune cells. This
could represent the attempt of the nervous system to support or
remove dysfunctional cells, or might posit some kind of
inflammation-mediated mechanism for the disruption of in-
terneurons in some patients (Wills et al., 2011). Consistent with
this interpretation, it is interesting to note that the genes driving
the implication of Pnoc+ neurons are different between the ge-
netic (Fig. 8C) and transcriptomic approaches (Fig. 8B). Like-
wise, the astrocyte-implicated genes include at least two validated
markers of these cells, Gfap and Aldh1l1 (Fig. 8A), which have no
link to the genetics of autism.

There are several cell types and regions long considered as
autism candidates for which we see no signal in any of our autism
analyses, for example, the cerebellum or serotonergic neurons
(Dougherty et al., 2013). While CSEA cannot be used to defini-
tively exclude particular cell types, this suggests that disruptions
acting specifically in these cells might be having their final conse-
quences on downstream cortical or striatal cell types, both of
which are structures innervated by serotonergic cells.

In total, the application of CSEA to autism suggests that au-
tism is not a disorder of just a single cell type. Across different
data sources, different, but somewhat overlapping, cell types were
implicated, with signals in astrocytes, immune cells, cortical neu-
rons (especially interneurons), and striatal medium spiny cells.
These observations suggest that there are potentially multiple
cellular routes to autism, though it is unclear whether multiple
cell types need to be disrupted in each individual or whether these
routes occur in different subsets of patients. This is an interesting
area for future investigation.

R package and on-line tool

To further facilitate the distribution of our data and approach
into the wide range of GO and GO-like tools available, we have
packaged our pSI code as an R package freely distributed from the
CRAN repository, with several useful functions for calculating
pSI, calculating Fisher’s exact tests, and returning the intersect
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Figure8. Autism genes and transcripts enriched in particular cell types. A, Transcriptionally

upregulated transcripts that overlap with astrocyte-enriched genes, corresponding to Figure
5A.Right column, pSlin cortical astrocytes. B, Transcriptionally downregulated transcripts that
overlap with Pnoc+ neuron-enriched transcripts, corresponding to Figure 58. €, Autism can-
didate genes that overlap with Pnoc+ neuron-enriched transcripts, corresponding to Figure 6.

between certain cell types and candidate gene lists. Most impor-
tantly, we have included the data and candidate gene lists used in
this manuscript, including our cell type data, for the end user.
This package should speed the propagation of our general data
and this style of approach to other tool developers. It will permit
the more savvy users to readily implement any variation in our
analyses that they would like.
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While we tested our CSEA approach with autism candidate
genes, this approach could be applied to other disorders of the ner-
vous system, as well as to other cutting edge sources of transcrip-
tomic data where there is a need for methods to identify cellular
composition from the data (Knight et al., 2012). Therefore, in
addition to the R package, we have also provided a web server
(http://genetics.wustl.edu/jdlab/csea-tool-2/) that will permit
other investigators to easily examine potential SE patterns
across mouse cell types, human adult brain regions, or human
brain development using their own candidate gene lists. We
hope that the identification of candidate cell types from the
genetic information will suggest novel routes to treatments in
these disorders.
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